翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

spectrum of a matrix : ウィキペディア英語版
spectrum of a matrix

In mathematics, the spectrum of a matrix is the set of its eigenvalues. More generally, if T:V\to V is a linear operator over any vector space, its spectrum is the set of scalars \lambda such that T-\lambda\cdot id is not invertible. The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues.
From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this quantity).
== Definition ==

Let ''V'' be a finite-dimensional vector space over some field ''K'' and suppose ''T'': ''V'' → ''V'' is a linear map. The ''spectrum'' of ''T'', denoted σ''T'', is the multiset of roots of the characteristic polynomial of ''T''. Thus the elements of the spectrum are precisely the eigenvalues of ''T'', and the multiplicity of an eigenvalue ''λ'' in the spectrum equals the dimension of the generalized eigenspace of ''T'' for ''λ'' (also called the algebraic multiplicity of ''λ'').
Now, fix a basis ''B'' of ''V'' over ''K'' and suppose ''M''∈Mat''K''(''V'') is a matrix. Define the linear map ''T'': ''V''→''V'' point-wise by ''Tx''=''Mx'', where on the right-hand side ''x'' is interpreted as a column vector and ''M'' acts on ''x'' by matrix multiplication. We now say that ''x''∈''V'' is an eigenvector of ''M'' if ''x'' is an eigenvector of ''T''. Similarly, λ∈''K'' is an eigenvalue of ''M'' if it is an eigenvalue of ''T'', and with the same multiplicity, and the spectrum of ''M'', written σ''M'', is the multiset of all such eigenvalues.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「spectrum of a matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.